[This question paper contains 6 printed pages.]

### Your Roll No.....

Sr. No. of Question Paper : 1128 G

Unique Paper Code : 235161

Name of the Paper : MACT 303 : Mathematics and

Statistics

Name of the Course : B.Sc. (Hons.) Biochemistry, Bio-

Medical Science, Microbiology

Semester : II

Duration: 3 Hours Maximum Marks: 75

## Instructions for Candidates:

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. This question paper contains three sections.
- 3. Attempt any two questions from each section.
- 4. Use of non-programmable scientific calculators and statistical tables is permitted.

# SECTION I

1. (a) Let  $L_1$  and  $L_2$  be two straight lines in a plane. Then write down all possible values of  $L_1 \cap L_2$ . (5½)

- (b) Suppose that only dried lentils and dried soyabeans are available for Rahul's daily requirement for protein which is 75 grams. 1 gram of lentil contains 0.26 gram of protein and 1 gram soyabean contains 0.35 gram of protein. Let his daily consumption be x grams of lentils and y grams of soyabean. Formulate equation giving relation between x any y.

  (5½)
- (c) The size of a slowly growing bacteria culture is approaximately given by  $N(t) = N_0 + 52t + 2t^2$ , where  $N_0$  is the size at t = 0 and t is time in hours. Find the growth rate when time is 5 hours. (5½)
- 2. (a) Write first five terms of the sequence given by recursion formulae

$$a_1 = 1, \ a_{n+1} = a_n + \frac{1}{2n}; \ n \in \mathbb{N}$$
 (5½)

- (b) Find the following limits:
  - (i)  $\lim_{n\to\infty} \frac{3+5n^2}{n+n^2}$
  - (ii)  $\lim_{n\to\infty}\frac{2n}{3^{n+1}}$  (5½)

- (c) Prove that  $e^x + e^{-x} = 2(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots)$ . (5½)
- (a) Differentiate
  - (i)  $x^5 \log x + x^2$

(ii) 
$$\frac{e^x}{\log x}$$
 (5½)

(b) If 
$$y = e^{-x} \cos x$$
, prove that  $\frac{d^2y}{dx^2} - 2e^{-x} \sin x = 0$  (5½)

(c) Evaluate

(i) 
$$\int \frac{\tan 2x}{\sec 2x} dx$$

(ii) 
$$\int x \left( \frac{1 + x \log x}{x} \right) dx$$
 (5½)

### SECTION II

4. (a) Let 
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ , find  $(A + B)^2$  (5)

(b) Find the values of x, y, z, w which satisfy matrix equation.

$$\begin{bmatrix} x-y & z+x \\ 2x+y & z+w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$
 (6)

- 5. (a) Find the image of point (-2, 2) under the following transformations using matrix multiplication:
  - (i) contraction by a scale factor 1/2.
  - (ii) reflection in origin. (6)

(b) If 
$$A = \begin{bmatrix} 0 & 3 \\ -2 & 5 \end{bmatrix}$$
, find k so that  $kA^2 = 5A - 6I_2$ . (5)

6. (a) If  $f(x) = x^2 - 5x + 7$  and  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ , find f(A). (5)

(b) For 
$$A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{2}{3} & \frac{-1}{3} \end{bmatrix}$$
, find it's transpose. Also verify

that  $A A^T = 1$ . (6)

#### Section III

- (a) Calculate the mean and standard deviation of the given data: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 (5)
- (b) For a moderately skewed distribution, the arithmetic mean is 100, coefficient of variation is 35 and Karl Pearson's coefficient of skewness is 0.2. Find the mode and median. (5)
- (a) Calculate the coefficient of correlation for the following data:

| _ |   |          |    |    | 1  | 5  | 6  | 7  | R  | 9  |     |
|---|---|----------|----|----|----|----|----|----|----|----|-----|
| ١ | X | 1        | 2  | 3  |    | 3  | 0  |    |    |    |     |
|   | V | 12       | 11 | 13 | 15 | 14 | 17 | 16 | 19 | 18 |     |
| , |   | <u> </u> | L  |    |    |    |    |    |    |    | (5) |

(b) Fit a straight line to the following data taking y as dependent variable

| dependent varia |   |   |    | $\overline{\Box}$ |    |  |  |             |
|-----------------|---|---|----|-------------------|----|--|--|-------------|
| Х               | 1 | 2 | 3  |                   | 3  |  |  | <b>'5</b> ) |
| Y               | 3 | 5 | 12 | 10                | 24 |  |  | رد          |

9. (a) A problem in Statistics is given to three students A, B,

C whose chances of probability that the problem is respectively. What is the probability that the problem is solved?

(b) Suppose that 8% of people are left handed, find the probability that 2 or more out of 25 are left handed. Assume that the distribution is a Poisson distribution.

(5)

- 10. (a) For a normal distribution with mean 12 and standard deviation 4. Find the probabilities:
  - (i)  $P(X \ge 20)$

(ii) 
$$P(X \le 12)$$
 (5)

(b) Hearing levels in two groups of school children with normal hearing in frequency of 500 cycles per second

|          | No. of children | Henri             |      |
|----------|-----------------|-------------------|------|
|          |                 | Hearing threshold | SD   |
| Group I  | 62              | · (dB)            | (dB) |
| Group II |                 | 15.5              | 6.5  |
| Test whe |                 | 20                | 7.1  |

Test whetehr there is any difference between hearing levels in two groups at 5% level of significance.